210 research outputs found

    Cactus pear fruit extract exerts anti-inflammatory effects in carrageenin-induced rat pleurisy

    Get PDF
    Nutritional research has recently shifted from alleviating nutrient deficiencies to chronic disease prevention. In this study activity of cactus pear fruit extract (CPFE) from Opuntia ficus-indica (L.) Mill. has been investigated in carrageenin-induced pleurisy, a rat model of acute inflammation. In our experimental design rat pleurisy was achieved by the injection of 0.2 ml of λ-carrageenin in the pleural cavity. At selected time points, rats were sacrificed; cells recruited in pleura were counted and exudates collected to analyse inflammatory parameters such as NO, PGE2, IL-1β, TNF-α. CPFE (in the range between 5 and 20 g fresh fruit equivalent/kg), orally given 30 min before the injection, time- and dose-dependently reduced the exudate volume (up to 72%) and the number of leukocytes recruited in the pleural cavity (up to 96%), at 24 h. These anti-inflammatory effects were accompanied by an inhibited release of inflammatory mediators (PGE2, NO, IL-1β, TNF-α). Our in vivo findings unveil for the first time an anti-inflammatory potential for cactus pear fruit and suggest further investigations to propose cactus pear fruit as a functional food able to improve health, possibly by preventing inflammation-based disorders. © 2015, International Society for Horticultural Science. All rights reserved

    Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition

    Get PDF
    Olive tree leaves are an abundant source of bioactive compounds with several beneficial effects for human health, including a protective role against many types of cancer. In this study, we investigated the effect of an extract, obtained from olive tree (Olea europaea L.) leaves (OLE), on proliferation, invasion, and epithelial to mesenchymal transition (EMT) on metastatic melanoma, the highly aggressive form of skin cancer and the deadliest diseases. Our results demonstrated that OLE inhibited melanoma cells proliferation through cell cycle arrest and induction of apoptotic cell death. Moreover, OLE suppressed the migration, invasion, and colonies formation of human melanoma cells. Similar to our in vitro findings, we demonstrated that the oral administration of OLE inhibited cutaneous tumor growth and lung metastasis formation in vivo by modulating the expression of EMT related factors. In addition, the anti-proliferative and anti-invasive effects of OLE against melanoma were also related to a simultaneous targeting of mitogen-activated protein kinase and PI3K pathways, both in vitro and in vivo. In conclusion, our findings suggest that OLE has the potential to inhibit the metastatic spread of melanoma cells thanks to its multifaceted mechanistic effects, and may represent a new add-on therapy for the management of metastatic melanoma

    The IkB kinase inhibitor nuclear factor-kB essential modulator–binding domain peptide for inhibition of balloon injury-induced neointimal formation

    Get PDF
    Objective—The activation of nuclear factor-kB (NF-kB) is a crucial step in the arterial wall’s response to injury. The identification and characterization of the NF-kB essential modulator– binding domain (NBD) peptide, which can block the activation of the IkB kinase complex, have provided an opportunity to selectively abrogate the inflammation-induced activation of NF-kB. The aim of the present study was to evaluate the effect of the NBD peptide on neointimal formation.<br></br> Methods and Results—In the rat carotid artery balloon angioplasty model, local treatment with the NBD peptide (300 microg/site) significantly reduced the number of proliferating cells at day 7 (by 40%; P<0.01) and reduced injury-induced neointimal formation (by 50%; P<0.001) at day 14. These effects were associated with a significant reduction of NF-kB activation and monocyte chemotactic protein-1 expression in the carotid arteries of rats treated with the peptide. In addition, the NBD peptide (0.01 to 1 micromol/L) reduced rat smooth muscle cell proliferation, migration, and invasion in vitro. Similar results were observed in apolipoprotein E-/-, mice in which the NBD peptide (150 microg/site) reduced wire-induced neointimal formation at day 28 (by 47%; P<0.01).<br></br> Conclusion—The NBD peptide reduces neointimal formation and smooth muscle cell proliferation/migration, both effects associated with the inhibition of NF-kB activation

    Crucial role of androgen receptor in vascular H2S biosynthesis induced by testosterone.

    Get PDF
    BACKGROUND AND PURPOSE: Hydrogen sulphide (H2S) is a gaseous mediator strongly involved in cardiovascular homeostasis, where it provokes vasodilation. Having previously shown that H2S contributes to testosterone (T) induced vasorelaxation, here we aim to uncover the mechanisms underlying this effect. EXPERIMENTAL APPROACH: H2S biosynthesis was evaluated in rat isolated aorta rings following androgen receptor (AR) stimulation. Co-immunoprecipitation and surface plasmon resonance analysis have been performed to investigate mechanisms involved in AR activation. KEY RESULTS: H2S biosynthesis is associated to activation of AR by testosterone or androgen agonist mesterolone and blocked by AR antagonist nilutamide. This event is linked to AR-multicomplex-derived heath shock protein 90 (hsp90), since its specific inhibitor geldanamycin strongly reduced T-induced H2S production. Neither progesterone nor 17-β-oestradiol actions did account for H2S release. Furthermore, we found that cystathionine gamma lyase (CSE), the main vascular H2S-synthesizing enzyme, is physically associated to AR/hsp90 complex and the generation of such a ternary system represents a key event leading to CSE activation. Finally, H2S levels in human blood collected from male healthy volunteers were higher than those observed in female samples. CONCLUSIONS AND IMPLICATIONS: Here, we demonstrated that selective activation of the AR is essential for H2S biosynthesis within vascular tissue and this event is based on formation of a ternary complex among CSE, AR and hsp90. This novel molecular mechanism operating in vascular district, corroborated by higher H2S level in males, suggested that L-cysteine/CSE/H2S pathway may be preferentially activated in males leading to a gender-related H2S biosynthesis

    Apolipoprotein A-I (ApoA-I) Mimetic Peptide P2a by Restoring CholesterolEsterification Unmasks ApoA-I Anti-Inflammatory Endogenous Activity In Vivo. CO-FIRST AUTHOR

    Get PDF
    The acute-phase protein haptoglobin (Hpt) binds apolipoprotein A-I (ApoA-I) and impairs its action on lecithin-cholesterol acyltransferase, an enzyme that plays a key role in reverse cholesterol transport. We have previously shown that an ApoA-I mimetic peptide, P2a, displaces Hpt from ApoA-I, restoring the enzyme activity in vitro. The aim of this study was to evaluate whether P2a displaces Hpt from ApoA-I in vivo and whether this event leads to anti-inflammatory activity. Mice received subplantar injections of carrageenan. Paw volume was measured before the injection and 2, 4, 6, 24, 48, 72, and 96 h thereafter. At the same time points, concentrations of HDL cholesterol (C) and cholesterol esters (CEs) were measured by high-performance liquid chromatography, and Hpt and ApoA-I plasma levels were evaluated by enzyme-linked immunosorbent assay. Western blotting analysis for nitric-oxide synthase and cyclooxygenase (COX) isoforms was also performed on paw homogenates. CEs significantly decreased in carrageenan-treated mice during edema development and negatively correlated with the Hpt/ApoA-I ratio. P2a administration significantly restored the CE/C ratio. In addition, P2a displayed an anti-inflammatory effect on the late phase of edema with a significant reduction in COX2 expression coupled to an inhibition of prostaglandin E2 synthesis, implying that, in the presence of P2a, CE/C ratio rescue and edema inhibition were strictly related. In conclusion, the P2a effect is due to its binding to Hpt with consequent displacement of ApoA-I that exerts anti-inflammatory activity. Therefore, it is feasible to design drugs that, by enhancing the physiological endogenous protective role of ApoA-I, may be useful in inflammation-based diseases

    PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy

    Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8<sup>+</sup> T cells.

    Get PDF
    Several mechanisms are present in the tumor microenvironment (TME) to impair cytotoxic T cell responses potentially able to control tumor growth. Among these, the accumulation of adenosine (Ado) contributes to tumor progression and represents a promising immunotherapeutic target. Ado has been shown to impair T cell effector function, but the role and mechanisms employed by Ado/Ado receptors (AdoRs) in modulating human peripheral and tumor-infiltrating lymphocyte (TIL) function are still puzzling. CD8 &lt;sup&gt;+&lt;/sup&gt; T cell cytokine production following stimulation was quantified by intracellular staining and flow cytometry. The cytotoxic capacity of tumor infiltrating lymphocytes (TILs) was quantified by the chromium release assay following co-culture with autologous or anti-CD3-loaded tumor cell lines. The CD8 &lt;sup&gt;+&lt;/sup&gt; T cell metabolic fitness was evaluated by the seahorse assay and by the quantification of 2-NBDG uptake and CD71/CD98 upregulation upon stimulation. The expression of AdoRs was assessed by RNA flow cytometry, a recently developed technology that we validated by semiquantitative RT-PCR (qRT-PCR), while the impact on T cell function was evaluated by the use of selective antagonists and agonists. The influence of Ado/AdoR on the PKA and mTOR pathways was evaluated by phosphoflow staining of p-CREB and p-S6, respectively, and validated by western blot. Here, we demonstrate that Ado signaling through the A2A receptor (A2AR) in human peripheral CD8 &lt;sup&gt;+&lt;/sup&gt; T cells and TILs is responsible for the higher sensitivity to Ado-mediated suppression of T central memory cells. We confirmed that Ado is able to impair peripheral and tumor-expanded T cell effector functions, and we show for the first time its impact on metabolic fitness. The Ado-mediated immunosuppressive effects are mediated by increased PKA activation that results in impairment of the mTORC1 pathway. Our findings unveil A2AR/PKA/mTORC1 as the main Ado signaling pathway impairing the immune competence of peripheral T cells and TILs. Thus, p-CREB and p-S6 may represent useful pharmacodynamic and efficacy biomarkers of immunotherapies targeting Ado. The effect of Ado on T cell metabolic fitness reinforces the importance of the adenosinergic pathway as a target for next-generation immunotherapy

    Azithromycin in the extremely low birth weight infant for the prevention of Bronchopulmonary Dysplasia: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Azithromycin reduces the severity of illness in patients with inflammatory lung disease such as cystic fibrosis and diffuse panbronchiolitis. Bronchopulmonary dysplasia (BPD) is a pulmonary disorder which causes significant morbidity and mortality in premature infants. BPD is pathologically characterized by inflammation, fibrosis and impaired alveolar development. The purpose of this study was to obtain pilot data on the effectiveness and safety of prophylactic azithromycin in reducing the incidence and severity of BPD in an extremely low birth weight (≤ 1000 grams) population.</p> <p>Methods</p> <p>Infants ≤ 1000 g birth weight admitted to the University of Kentucky Neonatal Intensive Care Unit (level III, regional referral center) from 9/1/02-6/30/03 were eligible for this pilot study. The pilot study was double-blinded, randomized, and placebo-controlled. Infants were randomized to treatment or placebo within 12 hours of beginning mechanical ventilation (IMV) and within 72 hours of birth. The treatment group received azithromycin 10 mg/kg/day for 7 days followed by 5 mg/kg/day for the duration of the study. Azithromycin or placebo was continued until the infant no longer required IMV or supplemental oxygen, to a maximum of 6 weeks. Primary endpoints were incidence of BPD as defined by oxygen requirement at 36 weeks gestation, post-natal steroid use, days of IMV, and mortality. Data was analyzed by intention to treat using Chi-square and ANOVA.</p> <p>Results</p> <p>A total of 43 extremely premature infants were enrolled in this pilot study. Mean gestational age and birth weight were similar between groups. Mortality, incidence of BPD, days of IMV, and other morbidities were not significantly different between groups. Post-natal steroid use was significantly less in the treatment group [31% (6/19)] vs. placebo group [62% (10/16)] (p = 0.05). Duration of mechanical ventilation was significantly less in treatment survivors, with a median of 13 days (1–47 days) vs. 35 days (1–112 days)(p = 0.02).</p> <p>Conclusion</p> <p>Our study suggests that azithromycin prophylaxis in extremely low birth weight infants may effectively reduce post-natal steroid use for infants. Further studies are needed to assess the effects of azithromycin on the incidence of BPD and possible less common side effects, before any recommendations regarding routine clinical use can be made.</p
    corecore